首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Practical reliable Bayesian recognition of 2D and 3D objects using implicit polynomials and algebraic invariants
【24h】

Practical reliable Bayesian recognition of 2D and 3D objects using implicit polynomials and algebraic invariants

机译:使用隐式多项式和代数不变量对2D和3D对象进行实际可靠的贝叶斯识别

获取原文
获取原文并翻译 | 示例

摘要

We treat the use of more complex higher degree polynomial curves and surfaces of degree higher than 2, which have many desirable properties for object recognition and position estimation, and attack the instability problem arising in their use with partial and noisy data. The scenario discussed in this paper is one where we have a set of objects that are modeled as implicit polynomial functions, or a set of representations of classes of objects with each object in a class modeled as an implicit polynomial function, stored in the database. Then, given partial data from one of the objects, we want to recognize the object (or the object class) or collect more data in order to get better parameter estimates for more reliable recognition. Two problems arising in this scenario are discussed: 1) the problem of recognizing these polynomials by comparing them in terms of their coefficients; and 2) the problem of where to collect data so as to improve the parameter estimates as quickly as possible. We use an asymptotic Bayesian approximation for solving the two problems. The intrinsic dimensionality of polynomials and the use of the Mahalanobis distance are discussed.
机译:我们处理使用更复杂的高次多项式曲线和2度以上的曲面,这些曲面具有许多用于对象识别和位置估计的理想属性,并使用部分和嘈杂的数据来解决因使用它们而引起的不稳定性问题。本文讨论的场景是在数据库中存储一组对象,这些对象被建模为隐式多项式函数,或者一组对象类的表示,其中每个对象在一个类中被隐式多项式函数建模。然后,给定一个对象中的部分数据,我们想要识别该对象(或对象类)或收集更多数据,以获得更好的参数估计,以实现更可靠的识别。讨论了在这种情况下出现的两个问题:1)通过比较系数来识别这些多项式的问题; 2)在哪里收集数据以尽快改善参数估计的问题。我们使用渐近贝叶斯近似来解决这两个问题。讨论了多项式的固有维数和马氏距离的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号