首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Distance metric between 3D models and 2D images for recognition and classification
【24h】

Distance metric between 3D models and 2D images for recognition and classification

机译:3D模型和2D图像之间的距离度量用于识别和分类

获取原文
获取原文并翻译 | 示例

摘要

Similarity measurements between 3D objects and 2D images are useful for the tasks of object recognition and classification. The authors distinguish between two types of similarity metrics: metrics computed in image-space (image metrics) and metrics computed in transformation-space (transformation metrics). Existing methods typically use image metrics; namely, metrics that measure the difference in the image between the observed image and the nearest view of the object. Example for such a measure is the Euclidean distance between feature points in the image and their corresponding points in the nearest view. (This measure can be computed by solving the exterior orientation calibration problem.) In this paper the authors introduce a different type of metrics: transformation metrics. These metrics penalize for the deformations applied to the object to produce the observed image. In particular, the authors define a transformation metric that optimally penalizes for "affine deformations" under weak-perspective. A closed-form solution, together with the nearest view according to this metric, are derived. The metric is shown to be equivalent to the Euclidean image metric, in the sense that they bound each other from both above and below. It therefore provides an easy-to-use closed-form approximation for the commonly-used least-squares distance between models and images. The authors demonstrate an image understanding application, where the true dimensions of a photographed battery charger are estimated by minimizing the transformation metric.
机译:3D对象和2D图像之间的相似性测量对于对象识别和分类任务很有用。作者区分了两种类型的相似性度量:图像空间中计算的度量(图像度量)和转换空间中计算的度量(转换度量)。现有方法通常使用图像指标;即,用于度量观察到的图像与对象的最近视图之间的图像差异的度量。这种度量的示例是图像中的特征点与其最近视图中的相应点之间的欧几里得距离。 (可以通过解决外部方向校准问题来计算此度量。)在本文中,作者介绍了一种不同类型的度量:转换度量。这些度量不利于施加到对象以产生观察图像的变形。特别是,作者定义了一种转换指标,该指标可以在弱透视条件下对“仿射变形”进行最佳惩罚。得出封闭形式的解决方案以及根据该度量的最近视图。从它们从上方和下方相互绑定的意义上,该度量显示为等效于欧几里得图像度量。因此,它为模型和图像之间的常用最小二乘距离提供了易于使用的封闭形式近似值。作者演示了一种图像理解应用程序,其中通过最小化变换指标来估算拍摄的电池充电器的真实尺寸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号