首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Classification using adaptive wavelets for feature extraction
【24h】

Classification using adaptive wavelets for feature extraction

机译:使用自适应小波进行特征提取的分类

获取原文
获取原文并翻译 | 示例

摘要

A major concern arising from the classification of spectral data is that the number of variables or dimensionality often exceeds the number of available spectra. This leads to a substantial deterioration in performance of traditionally favoured classifiers. It becomes necessary to decrease the number of variables to a manageable size, whilst, at the same time, retaining as much discriminatory information as possible. A new and innovative technique based on adaptive wavelets, which aims to reduce the dimensionality and optimize the discriminatory information is presented. The discrete wavelet transform is utilized to produce wavelet coefficients which are used for classification. Rather than using one of the standard wavelet bases, we generate the wavelet which optimizes specified discriminant criteria.
机译:光谱数据分类引起的一个主要问题是变量或维数通常超过可用光谱的数量。这导致传统上受好评的分类器的性能大大下降。有必要将变量的数量减少到可管理的大小,同时保留尽可能多的歧视性信息。提出了一种新的基于自适应小波的创新技术,旨在减小维数并优化区分信息。利用离散小波变换来产生用于分类的小波系数。而不是使用标准小波基之一,而是生成优化指定判别标准的小波。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号