首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Use of Fourier and Karhunen-Loeve decomposition for fast pattern matching with a large set of templates
【24h】

Use of Fourier and Karhunen-Loeve decomposition for fast pattern matching with a large set of templates

机译:使用Fourier和Karhunen-Loeve分解与大量模板进行快速模式匹配

获取原文
获取原文并翻译 | 示例

摘要

We present a fast pattern matching algorithm with a large set of templates. The algorithm is based on the typical template matching speeded up by the dual decomposition; the Fourier transform and the Karhunen-Loeve transform. The proposed algorithm is appropriate for the search of an object with unknown distortion within a short period. Patterns with different distortion differ slightly from each other and are highly correlated. The image vector subspace required for effective representation can be defined by a small number of eigenvectors derived by the Karhunen-Loeve transform. A vector subspace spanned by the eigenvectors is generated, and any image vector in the subspace is considered as a pattern to be recognized. The pattern matching of objects with unknown distortion is formulated as the process to extract the portion of the input image, find the pattern most similar to the extracted portion in the subspace, compute normalized correlation between them at each location in the input image, and find the location with the best score. Searching for objects with unknown distortion requires vast computation. The formulation above makes it possible to decompose highly correlated reference images into eigenvectors, as well as to decompose images in frequency domain, and to speed up the process significantly.
机译:我们提出了带有大量模板的快速模式匹配算法。该算法基于通过双重分解加速的典型模板匹配。傅立叶变换和Karhunen-Loeve变换。所提出的算法适合在短时间内搜索未知失真的对象。具有不同失真的图案彼此之间略有不同,并且高度相关。有效表示所需的图像向量子空间可以通过Karhunen-Loeve变换得出的少量特征向量来定义。生成由特征向量跨越的向量子空间,并且该子空间中的任何图像向量都被视为要识别的模式。将具有未知失真的对象的模式匹配公式化为以下过程:提取输入图像的部分,在子空间中找到与提取的部分最相似的模式,在输入图像中的每个位置计算它们之间的归一化相关性,然后找到得分最高的位置。搜索失真未知的对象需要大量的计算。上面的公式使将高度相关的参考图像分解为特征向量,以及在频域上分解图像成为可能,并显着加快了处理速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号