首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Ligature modeling for online cursive script recognition
【24h】

Ligature modeling for online cursive script recognition

机译:用于在线草书脚本识别的连字建模

获取原文
获取原文并翻译 | 示例

摘要

Online recognition of cursive words is a difficult task owing to variable shape and ambiguous letter boundaries. The approach proposed is based on hidden Markov modeling of letters and inter-letter patterns called ligatures occurring in cursive script. For each of the letters and the ligatures we create one HMM that models temporal and spatial variability of handwriting. By networking the two kinds of HMMs, we can design a network model for all words or composite characters. The network incorporates the knowledge sources of grammatical and structural constraints so that it can better capture the characteristics of handwriting. Given the network, the problem of recognition is formulated into that of finding the most likely path from the start node to the end node. A dynamic programming-based search for the optimal input-network alignment performs character recognition and letter segmentation simultaneously and efficiently. Experiments on Korean character showed correct recognition of up to 93.3% on unconstrained samples. It has also been compared with several other schemes of HMM-based recognition to characterize the proposed approach.
机译:由于形状和字母边界不明确,在线识别草书单词是一项艰巨的任务。所提出的方法是基于草书中出现的字母和字母间模式(称为连字)的隐马尔可夫建模。对于每个字母和连字,我们创建一个HMM来建模手写的时间和空间变异性。通过将两种HMM联网,我们可以为所有单词或复合字符设计一个网络模型。该网络结合了语法和结构约束的知识源,以便可以更好地捕获手写特征。在给定网络的情况下,识别问题被公式化为寻找从起始节点到结束节点的最可能路径的问题。基于动态编程的最佳输入网络对齐搜索可同时高效地执行字符识别和字母分割。关于韩文字符的实验表明,在不受约束的样本上正确识别率高达93.3%。还已将其与基于HMM的其他几种识别方案进行比较,以表征所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号