首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Nonlinear modeling of scattered multivariate data and its application to shape change
【24h】

Nonlinear modeling of scattered multivariate data and its application to shape change

机译:离散多元数据的非线性建模及其在形状变化中的应用

获取原文
获取原文并翻译 | 示例

摘要

We are given a set of points in a space of high dimension. For instance, this set may represent many visual appearances of an object, a face, or a hand. We address the problem of approximating this set by a manifold in order to have a compact representation of the object appearance. When the scattering of this set is approximately an ellipsoid, then the problem has a well-known solution given by principal components analysis (PCA). However, in some situations like object displacement learning or face learning, this linear technique may be ill-adapted and nonlinear approximation has to be introduced. The method we propose can be seen as a nonlinear PCA (NLPCA), the main difficulty being that the data are not ordered. We propose an index which favors the choice of axes preserving the closest point neighborhoods. These axes determine an order for visiting all the points when smoothing. Finally, a new criterion, called "generalization error", is introduced to determine the smoothing rate, that is, the knot number for the spline fitting. Experimental results conclude this paper: The method is tested on artificial data and on two databases used in visual learning.
机译:我们在高维空间中得到了一组点。例如,该集合可以表示对象,面部或手的许多视觉外观。我们解决了用歧管逼近此集合的问题,以便对对象外观进行紧凑表示。当该组的散射近似为椭圆体时,该问题具有主成分分析(PCA)给出的众所周知的解决方案。但是,在某些情况下(例如对象位移学习或人脸学习),此线性技术可能不适应,必须引入非线性逼近。我们提出的方法可以看作是非线性PCA(NLPCA),主要困难在于数据没有排序。我们提出了一个索引,该索引有利于选择保留最近点邻域的轴。这些轴确定平滑时访问所有点的顺序。最后,引入了一个称为“泛化误差”的新准则来确定平滑率,即样条拟合的结数。实验结果总结了本文:该方法在人工数据和用于视觉学习的两个数据库上进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号