首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Robust real-time periodic motion detection, analysis, and applications
【24h】

Robust real-time periodic motion detection, analysis, and applications

机译:强大的实时周期性运动检测,分析和应用

获取原文
获取原文并翻译 | 示例

摘要

We describe new techniques to detect and analyze periodic motion as seen from both a static and a moving camera. By tracking objects of interest, we compute an object's self-similarity as it evolves in time. For periodic motion, the self-similarity measure is also periodic and we apply time-frequency analysis to detect and characterize the periodic motion. The periodicity is also analyzed robustly using the 2D lattice structures inherent in similarity matrices. A real-time system has been implemented to track and classify objects using periodicity. Examples of object classification (people, running dogs, vehicles), person counting, and nonstationary periodicity are provided.
机译:我们描述了用于检测和分析从静态和移动相机看到的周期性运动的新技术。通过跟踪感兴趣的对象,我们可以计算对象随时间变化的自相似性。对于周期性运动,自相似性度量也是周期性的,我们应用时频分析来检测和表征周期性运动。还使用相似性矩阵中固有的2D晶格结构对周期进行了稳健的分析。已经实现了实时系统以使用周期性来跟踪和分类对象。提供了对象分类(人员,流浪犬,车辆),人员计数和非平稳周期性的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号