首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Motion recognition using nonparametric image motion models estimated from temporal and multiscale co-occurrence statistics
【24h】

Motion recognition using nonparametric image motion models estimated from temporal and multiscale co-occurrence statistics

机译:使用从时间和多尺度共现统计量估计的非参数图像运动模型进行运动识别

获取原文
获取原文并翻译 | 示例

摘要

A new approach for motion characterization in image sequences is presented. It relies on the probabilistic modeling of temporal and scale co-occurrence distributions of local motion-related measurements directly computed over image sequences. Temporal multiscale Gibbs models allow us to handle both spatial and temporal aspects of image motion content within a unified statistical framework. Since this modeling mainly involves the scalar product between co-occurrence values and Gibbs potentials, we can formulate and address several fundamental issues: model estimation according to the ML criterion (hence, model training and learning) and motion classification. We have conducted motion recognition experiments over a large set of real image sequences comprising various motion types such as temporal texture samples, human motion examples, and rigid motion situations.
机译:提出了一种在图像序列中进行运动表征的新方法。它依赖于在图像序列上直接计算的与局部运动有关的测量的时间和比例同时出现分布的概率建模。时间多尺度吉布斯模型使我们能够在统一的统计框架内处理图像运动内容的空间和时间方面。由于此建模主要涉及同现值和Gibbs势之间的标量积,因此我们可以制定和解决几个基本问​​题:根据ML准则进行模型估计(因此,对模型进行训练和学习)以及对运动进行分类。我们已经对包含大量运动类型的大量真实图像序列进行了运动识别实验,这些运动类型包括时间纹理样本,人体运动示例和刚性运动情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号