首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Estimating degradation model parameters using neighborhood pattern distributions: an optimization approach
【24h】

Estimating degradation model parameters using neighborhood pattern distributions: an optimization approach

机译:使用邻域模式分布估计退化模型参数:一种优化方法

获取原文
获取原文并翻译 | 示例

摘要

Noise models are crucial for designing image restoration algorithms, generating synthetic training data, and predicting algorithm performance. There are two related but distinct estimation scenarios. The first is model calibration, where it is assumed that the input ideal bitmap and the output of the degradation process are both known. The second is the general estimation problem, where only the image from the output of the degradation process is given. While researchers have addressed the problem of calibration of models, issues with the general estimation problems have not been addressed in the literature. In this paper, we describe a parameter estimation algorithm for a morphological, binary, page-level image degradation model. The inputs to the estimation algorithm are 1) the degraded image and 2) information regarding the font type (italic, bold, serif, sans serif). We simulate degraded images using our model and search for the optimal parameter by looking for a parameter value for which the local neighborhood pattern distributions in the simulated image and the given degraded image are most similar. The parameter space is searched using a direct search optimization algorithm. We use the p-value of the Kolmogorov-Smirnov test as the measure of similarity between the two neighborhood pattern distributions. We show results of our algorithm on degraded document images.
机译:噪声模型对于设计图像恢复算法,生成综合训练数据以及预测算法性能至关重要。有两种相关但截然不同的估算方案。首先是模型校准,其中假设输入理想位图和降级过程的输出均已知。第二个是一般的估计问题,其中仅给出了降级过程输出的图像。虽然研究人员已经解决了模型校准的问题,但一般的估计问题尚未在文献中得到解决。在本文中,我们描述了一种用于形态学,二进制,页面级图像退化模型的参数估计算法。估计算法的输入是1)降级的图像和2)有关字体类型(斜体,粗体,衬线,无衬线)的信息。我们使用我们的模型来模拟退化图像,并通过寻找一个参数值来搜索最佳参数,该参数值与模拟图像和给定退化图像中的局部邻域模式分布最相似。使用直接搜索优化算法搜索参数空间。我们使用Kolmogorov-Smirnov检验的p值作为两个邻域分布之间相似性的量度。我们在退化的文档图像上显示了我们算法的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号