首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Stereo reconstruction from multiperspective panoramas
【24h】

Stereo reconstruction from multiperspective panoramas

机译:从多角度全景图进行立体声重建

获取原文
获取原文并翻译 | 示例

摘要

A new approach to computing a panoramic (360 degrees) depth map is presented in this paper. Our approach uses a large collection of images taken by a camera whose motion has been constrained to planar concentric circles. We resample regular perspective images to produce a set of multiperspective panoramas and then compute depth maps directly from these resampled panoramas. Our panoramas sample uniformly in three dimensions: rotation angle, inverse radial distance, and vertical elevation. The use of multiperspective panoramas eliminates the limited overlap present in the original input images and, thus, problems as in conventional multibaseline stereo can be avoided. Our approach differs from stereo matching of single-perspective panoramic images taken from different locations, where the epipolar constraints are sine curves. For our multiperspective panoramas, the epipolar geometry, to the first order approximation, consists of horizontal lines. Therefore, any traditional stereo algorithm can be applied to multiperspective panoramas with little modification. In this paper, we describe two reconstruction algorithms. The first is a cylinder sweep algorithm that uses a small number of resampled multiperspective panoramas to obtain dense 3D reconstruction. The second algorithm, in contrast, uses a large number of multiperspective panoramas and takes advantage of the approximate horizontal epipolar geometry inherent in multiperspective panoramas. It comprises a novel and efficient 1D multibaseline matching technique, followed by tensor voting to extract the depth surface. Experiments show that our algorithms are capable of producing comparable high quality depth maps which can be used for applications such as view interpolation.
机译:本文提出了一种计算全景(360度)深度图的新方法。我们的方法使用了相机拍摄的大量图像,这些相机的运动已被限制在平面同心圆上。我们对常规透视图图像进行重新采样以生成一组多视角全景图,然后直接从这些重新采样的全景图中计算深度图。我们的全景图在三个维度上均匀采样:旋转角度,反径向距离和垂直高程。多透视全景图的使用消除了原始输入图像中存在的有限重叠,因此,可以避免常规多基线立体声中的问题。我们的方法不同于从不同位置拍摄的单透视全景图像的立体匹配,在这里,对极约束是正弦曲线。对于我们的多角度全景图,对极几何(一阶近似)由水平线组成。因此,任何传统的立体算法都几乎无需修改即可应用于多视角全景图。在本文中,我们描述了两种重建算法。第一种是圆柱扫描算法,该算法使用少量重新采样的多视角全景图来获得密集的3D重建。相比之下,第二种算法使用了大量的多角度全景图,并利用了多角度全景图中固有的近似水平对极几何形状。它包括一种新颖有效的一维多基线匹配技术,然后进行张量投票以提取深度表面。实验表明,我们的算法能够生成可比较的高质量深度图,可用于视图插值等应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号