首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Parsing with probabilistic strictly locally testable tree languages
【24h】

Parsing with probabilistic strictly locally testable tree languages

机译:解析概率严格本地可测试的树语言

获取原文
获取原文并翻译 | 示例

摘要

Probabilistic k-testable models (usually known as k-gram models in the case of strings) can be easily identified from samples and allow for smoothing techniques to deal with unseen events during pattern classification. In this paper, we introduce the family of stochastic k-testable tree languages and describe how these models can approximate any stochastic rational tree language. The model is applied to the task of learning a probabilistic k-testable model from a sample of parsed sentences. In particular, a parser for a natural language grammar that incorporates smoothing is shown.
机译:概率k可检验模型(在字符串的情况下通常称为k-gram模型)可以轻松地从样本中识别出来,并可以使用平滑技术来处理模式分类期间发生的未见事件。在本文中,我们介绍了随机k可测树语言家族,并描述了这些模型如何近似任何随机有理树语言。该模型适用于从解析的句子样本中学习概率k可检验模型的任务。特别地,示出了结合了平滑的自然语言语法的解析器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号