首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Adaptively merging large-scale range data with reflectance properties
【24h】

Adaptively merging large-scale range data with reflectance properties

机译:自适应合并具有反射特性的大范围数据

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we tackle the problem of geometric and photometric modeling of large intricately shaped objects. Typical target objects we consider are cultural heritage objects. When constructing models of such objects, we are faced with several important issues that have not been addressed in the past-issues that mainly arise due to the large amount of data that has to be handled. We propose two novel approaches to efficiently handle such large amounts of data: A highly adaptive algorithm for merging range images and an adaptive nearest-neighbor search to be used with the algorithm. We construct an integrated mesh model of the target object in adaptive resolution, taking into account the geometric and/or photometric attributes associated with the range images. We use surface curvature for the geometric attributes and (laser) reflectance values for the photometric attributes. This adaptive merging framework leads to a significant reduction in the necessary amount of computational resources. Furthermore, the resulting adaptive mesh models can be of great use for applications such as texture mapping, as we will briefly demonstrate. Additionally, we propose an additional test for the k-d tree nearest-neighbor search algorithm. Our approach successfully omits back-tracking, which is controlled adaptively depending on the distance to the nearest neighbor. Since the main consumption of computational cost lies in the nearest-neighbor search, the proposed algorithm leads to a significant speed-up of the whole merging process. In this paper, we present the theories and algorithms of our approaches with pseudo code and apply them to several real objects, including large-scale cultural assets.
机译:在本文中,我们解决了大型复杂形状物体的几何和光度学建模问题。我们考虑的典型目标对象是文化遗产对象。在构建此类对象的模型时,我们会遇到一些以前的问题中未解决的重要问题,这些问题主要是由于必须处理大量数据而引起的。我们提出了两种新颖的方法来有效处理如此大量的数据:用于合并距离图像的高度自适应算法和与该算法一起使用的自适应最近邻搜索。考虑到与距离图像关联的几何和/或光度属性,我们以自适应分辨率构建了目标对象的集成网格模型。我们将曲面曲率用于几何属性,将(激光)反射率值用于光度属性。该自适应合并框架导致所需计算资源量的显着减少。此外,正如我们将简要演示的那样,所得的自适应网格模型对于诸如纹理贴图的应用很有用。此外,我们为k-d树最近邻居搜索算法提出了另一项测试。我们的方法成功省略了回溯,该回溯根据与最近邻居的距离进行自适应控制。由于计算成本的主要消耗在于最近邻搜索,因此所提出的算法可显着加快整个合并过程。在本文中,我们用伪代码介绍了我们的方法的理论和算法,并将其应用于包括大量文化资产在内的几个实际对象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号