首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Skin segmentation using color pixel classification: analysis and comparison
【24h】

Skin segmentation using color pixel classification: analysis and comparison

机译:使用彩色像素分类进行皮肤分割:分析和比较

获取原文
获取原文并翻译 | 示例

摘要

This work presents a study of three important issues of the color pixel classification approach to skin segmentation: color representation, color quantization, and classification algorithm. Our analysis of several representative color spaces using the Bayesian classifier with the histogram technique shows that skin segmentation based on color pixel classification is largely unaffected by the choice of the color space. However, segmentation performance degrades when only chrominance channels are used in classification. Furthermore, we find that color quantization can be as low as 64 bins per channel, although higher histogram sizes give better segmentation performance. The Bayesian classifier with the histogram technique and the multilayer perceptron classifier are found to perform better compared to other tested classifiers, including three piecewise linear classifiers, three unimodal Gaussian classifiers, and a Gaussian mixture classifier.
机译:这项工作提出了针对皮肤分割的颜色像素分类方法的三个重要问题的研究:颜色表示,颜色量化和分类算法。我们使用带直方图技术的贝叶斯分类器对几个代表性颜色空间进行的分析表明,基于颜色像素分类的皮肤分割在很大程度上不受颜色空间选择的影响。但是,仅在分类中使用色度通道时,分割性能会下降。此外,我们发现,尽管较高的直方图大小可提供更好的分割性能,但每个通道的颜色量化可以低至64 bins。与其他经过测试的分类器(包括三个分段线性分类器,三个单峰高斯分类器和高斯混合分类器)相比,采用直方图技术的贝叶斯分类器和多层感知器分类器的性能更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号