首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Multibody grouping by inference of multiple subspaces from high-dimensional data using oriented-frames
【24h】

Multibody grouping by inference of multiple subspaces from high-dimensional data using oriented-frames

机译:通过使用定向框架从高维数据推断多个子空间来进行多体分组

获取原文
获取原文并翻译 | 示例

摘要

Recently, subspace constraints have been widely exploited in many computer vision problems such as multibody grouping. Under linear projection models, feature points associated with multiple bodies reside in multiple subspaces. Most existing factorization-based algorithms can segment objects undergoing independent motions. However, intersections among the correlated motion subspaces will lead most previous factorization-based algorithms to erroneous segmentation. To overcome this limitation, in this paper, we formulate the problem of multibody grouping as inference of multiple subspaces from a high-dimensional data space. A novel and robust algorithm is proposed to capture the configuration of the multiple subspace structure and to find the segmentation of objects by clustering the feature points into these inferred subspaces, no matter whether they are independent or correlated. In the proposed method, an oriented-frame (OF), which is a multidimensional coordinate frame, is associated with each data point indicating the point's preferred subspace configuration. Based on the similarity between the subspaces, novel mechanisms of subspace evolution and voting are developed. By filtering the outliers due to their structural incompatibility, the subspace configurations will emerge. Compared with most existing factorization-based algorithms that cannot correctly segment correlated motions, such as motions of articulated objects, the proposed method has a robust performance in both independent and correlated motion segmentation. A number of controlled and real experiments show the effectiveness of the proposed method. However, the current approach does not deal with transparent motions and motion subspaces of different dimensions.
机译:最近,子空间约束已在许多计算机视觉问题(例如多实体分组)中得到了广泛利用。在线性投影模型下,与多个实体关联的特征点位于多个子空间中。大多数现有的基于分解的算法都可以分割经历独立运动的对象。但是,相关运动子空间之间的交集将导致大多数以前的基于分解的算法导致错误的分割。为了克服这一局限性,在本文中,我们将多体分组的问题公式化为从高维数据空间推断多个子空间。提出了一种新颖且鲁棒的算法,以捕获多个子空间结构的配置并通过将特征点聚类到这些推断的子空间中而找到对象的分割,无论它们是独立的还是相关的。在提出的方法中,作为多维坐标系的定向框架(OF)与指示该点的首选子空间配置的每个数据点关联。基于子空间之间的相似性,开发了子空间演化和投票的新机制。通过过滤由于结构不兼容而导致的异常值,子空间配置将出现。与大多数现有的无法正确分割相关运动(例如关节运动)的基于分解的算法相比,该方法在独立运动和相关运动分割方面均具有强大的性能。大量的控制实验和实际实验证明了该方法的有效性。但是,当前方法并未处理透明运动和不同维度的运动子空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号