首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Minimum classification error training for online handwriting recognition
【24h】

Minimum classification error training for online handwriting recognition

机译:在线手写识别的最小分类错误训练

获取原文
获取原文并翻译 | 示例

摘要

This paper describes an application of the minimum classification error (MCE) criterion to the problem of recognizing online unconstrained-style characters and words. We describe an HMM-based, character and word-level MCE training aimed at minimizing the character or word error rate while enabling flexibility in writing style through the use of multiple allographs per character. Experiments on a writer-independent character recognition task covering alpha-numerical characters and keyboard symbols show that the MCE criterion achieves more than 30 percent character error rate reduction compared to the baseline maximum likelihood-based system. Word recognition results, on vocabularies of 5k to 10k, show that MCE training achieves around 17 percent word error rate reduction when compared to the baseline maximum likelihood system.
机译:本文介绍了最小分类错误(MCE)准则在在线无约束样式字符和单词识别问题中的应用。我们介绍了一种基于HMM的字符和单词级别的MCE培训,旨在最大程度地减少字符或单词的错误率,同时通过每个字符使用多个分配器来实现书写风格的灵活性。对涉及字母数字字符和键盘符号的与书写者无关的字符识别任务的实验表明,与基于基线最大似然的系统相比,MCE标准可将字符错误率降低30%以上。在5k至10k的词汇量上的单词识别结果表明,与基线最大似然系统相比,MCE训练可实现约17%的单词错误率降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号