首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Joint multiregion segmentation and parametric estimation of image motion by basis function representation and level set evolution
【24h】

Joint multiregion segmentation and parametric estimation of image motion by basis function representation and level set evolution

机译:通过基函数表示和水平集演化对图像运动进行联合多区域分割和参数估计

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this study is to investigate a variational method for joint segmentation and parametric estimation of image motion by basis function representation of motion and level set evolution. The functional contains three terms. One term is of classic regularization to bias the solution toward a segmentation with smooth boundaries. A second term biases the solution toward a segmentation with boundaries which coincide with motion discontinuities, following a description of motion discontinuities by a function of the image spatio-temporal variations. The third term refers to region information and measures conformity of the parametric representation of the motion of each region of segmentation to the image spatio-temporal variations. The components of motion in each region of segmentation are represented as functions in a space generated by a set of basis functions. The coefficients of the motion components considered combinations of the basis functions are the parameters of representation. The necessary conditions for a minimum of the functional, which are derived taking into consideration the dependence of the motion parameters on segmentation, lead to an algorithm which condenses to concurrent curve evolution, implemented via level sets, and estimation of the parameters by least squares within each region of segmentation. The algorithm and its implementation are verified on synthetic and real images using a basis of cosine transforms.
机译:这项研究的目的是研究一种通过运动和水平集演化的基函数表示对图像运动进行联合分割和参数估计的变分方法。该功能包含三个术语。一个术语是经典正则化,它将解决方案偏向具有平滑边界的分段。在通过图像时空变化的函数描述运动不连续之后,第二项将解决方案偏向于具有与运动不连续相一致的边界的分割。第三项是指区域信息,并测量每个分割区域的运动参数表示与图像时空变化的一致性。在每个分割区域中的运动分量表示为一组基本函数生成的空间中的函数。被认为是基函数组合的运动分量的系数是表示的参数。在考虑到运动参数对分段的依赖性的基础上得出的功能最小化的必要条件导致了一种算法,该算法凝结为并发曲线的演化,通过水平集实现,并通过最小二乘法估计参数每个细分区域。使用余弦变换在合成图像和真实图像上验证了该算法及其实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号