首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Rapid object indexing using locality sensitive hashing and joint 3D-signature space estimation
【24h】

Rapid object indexing using locality sensitive hashing and joint 3D-signature space estimation

机译:使用局部敏感哈希和联合3D签名空间估计的快速对象索引

获取原文
获取原文并翻译 | 示例

摘要

We propose a new method for rapid 3D object indexing that combines feature-based methods with coarse alignment-based matching techniques. Our approach achieves a sublinear complexity on the number of models, maintaining at the same time a high degree of performance for real 3D sensed data that is acquired in largely uncontrolled settings. The key component of our method is to first index surface descriptors computed at salient locations from the scene into the whole model database using the locality sensitive hashing (LSH), a probabilistic approximate nearest neighbor method. Progressively complex geometric constraints are subsequently enforced to further prune the initial candidates and eliminate false correspondences due to inaccuracies in the surface descriptors and the errors of the LSH algorithm. The indexed models are selected based on the MAP rule using posterior probability of the models estimated in the joint 3D-signature space. Experiments with real 3D data employing a large database of vehicles, most of them very similar in shape, containing 1,000,000 features from more than 365 models demonstrate a high degree of performance in the presence of occlusion and obscuration, unmodeled vehicle interiors and part articulations, with an average processing time between 50 and 100 seconds per query.
机译:我们提出了一种新的快速3D对象索引方法,该方法将基于特征的方法与基于粗对齐的匹配技术相结合。我们的方法在模型数量上实现了亚线性复杂性,同时为在很大程度上不受控制的设置中获取的真实3D感测数据保持了较高的性能。我们方法的关键组成部分是首先使用局部性敏感哈希(LSH)(一种概率近似最邻近方法)将在场景中从显着位置计算出的表面描述符索引到整个模型数据库中。随后强制执行渐进复杂的几何约束,以进一步修剪初始候选对象,并消除由于曲面描述符的不准确和LSH算法错误而导致的错误对应。使用联合3D签名空间中估计的模型的后验概率,根据MAP规则选择索引模型。使用大型车辆数据库对真实3D数据进行的实验,其中大多数形状非常相似,包含来自365种以上模型的1,000,000个特征,证明在存在遮挡和遮挡,未建模的车辆内部和零件铰接的情况下,具有很高的性能每个查询的平均处理时间在50到100秒之间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号