首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >From sample similarity to ensemble similarity: probabilistic distance measures in reproducing kernel Hilbert space
【24h】

From sample similarity to ensemble similarity: probabilistic distance measures in reproducing kernel Hilbert space

机译:从样本相似度到整体相似度:重现内核希尔伯特空间的概率距离测度

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of characterizing ensemble similarity from sample similarity in a principled manner. Using a reproducing kernel as a characterization of sample similarity, we suggest a probabilistic distance measure in the reproducing kernel Hilbert space (RKHS) as the ensemble similarity. Assuming normality in the RKHS, we derive analytic expressions for probabilistic distance measures that are commonly used in many applications, such as Chernoff distance (or the Bhattacharyya distance as its special case), Kullback-Leibler divergence, etc. Since the reproducing kernel implicitly embeds a nonlinear mapping, our approach presents a new way to study these distances whose feasibility and efficiency is demonstrated using experiments with synthetic and real examples. Further, we extend the ensemble similarity to the reproducing kernel for ensemble and study the ensemble similarity for more general data representations.
机译:本文从原理上解决了从样本相似度表征整体相似度的问题。使用再现核作为样本相似度的特征,我们建议在再现核希尔伯特空间(RKHS)中采用概率距离度量作为整体相似度。假设RKHS的正态性,我们推导了许多应用中常用的概率距离度量的解析表达式,例如Chernoff距离(或Bhattacharyya距离为特例),Kullback-Leibler散度等。通过非线性映射,我们的方法提出了一种研究这些距离的新方法,其可行性和效率已通过使用综合实例和实际实例进行了实验证明。此外,我们将整体相似度扩展到用于整体的再现内核,并研究整体相似度以获取更通用的数据表示形式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号