首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Activity Recognition of Assembly Tasks Using Body-Worn Microphones and Accelerometers
【24h】

Activity Recognition of Assembly Tasks Using Body-Worn Microphones and Accelerometers

机译:使用穿戴式麦克风和加速度计进行装配任务的活动识别

获取原文
获取原文并翻译 | 示例

摘要

In order to provide relevant information to mobile users, such as workers engaging in the manual tasks of maintenance and assembly, a wearable computer requires information about the user''s specific activities. This work focuses on the recognition of activities that are characterized by a hand motion and an accompanying sound. Suitable activities can be found in assembly and maintenance work. Here, we provide an initial exploration into the problem domain of continuous activity recognition using on-body sensing. We use a mock "wood workshop” assembly task to ground our investigation. We describe a method for the continuous recognition of activities (sawing, hammering, filing, drilling, grinding, sanding, opening a drawer, tightening a vise, and turning a screwdriver) using microphones and three-axis accelerometers mounted at two positions on the user''s arms. Potentially "interesting” activities are segmented from continuous streams of data using an analysis of the sound intensity detected at the two different locations. Activity classification is then performed on these detected segments using linear discriminant analysis (LDA) on the sound channel and hidden Markov models (HMMs) on the acceleration data. Four different methods at classifier fusion are compared for improving these classifications. Using user-dependent training, we obtain continuous average recall and precision rates (for positive activities) of 78 percent and 74 percent, respectively. Using user-independent training (leave-one-out across five users), we obtain recall rates of 66 percent and precision rates of 63 percent. In isolation, these activities were recognized with accuracies of 98 percent, 87 percent, and 95 percent for the user-dependent, user-independent, and user-adapted cases, respectively.
机译:为了向移动用户(例如从事维护和组装手动任务的工人)提供相关信息,可穿戴式计算机需要有关用户特定活动的信息。这项工作着重于识别以手势和伴随声音为特征的活动。在组装和维护工作中可以找到适当的活动。在这里,我们提供了对使用人体感应进行连续活动识别的问题域的初步探索。我们使用一个模拟的“木制车间”组装任务来进行调查,我们描述了一种连续识别活动的方法(锯,锤,锉,钻,打磨,打磨,打开抽屉,拧紧虎钳和转动螺丝刀) ),使用麦克风和安装在用户手臂两个位置上的三轴加速度计,通过对在两个不同位置检测到的声音强度进行分析,从连续的数据流中分离出潜在的“有趣”活动。然后使用声音通道上的线性判别分析(LDA)和加速度数据上的隐马尔可夫模型(HMM)对这些检测到的片段进行活动分类。比较了分类器融合中的四种不同方法,以改善这些分类。使用基于用户的培训,我们获得的连续平均召回率和准确率(对于积极的活动)分别为78%和74%。使用独立于用户的培训(五个用户一劳永逸),我们获得66%的召回率和63%的准确率。孤立地,对于与用户有关,与用户无关和用户适应的案例,这些活动的准确度分别为98%,87%和95%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号