首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Reduced complexity rotation invariant texture classification using a blind deconvolution approach
【24h】

Reduced complexity rotation invariant texture classification using a blind deconvolution approach

机译:使用盲反卷积方法降低复杂度旋转不变纹理分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a texture classification procedure that makes use of a blind deconvolution approach. Specifically, the texture is modeled as the output of a linear system driven by a binary excitation. We show that features computed from one-dimensional slices extracted from the two-dimensional autocorrelation function (ACF) of the binary excitation allows representing the texture for rotation-invariant classification purposes. The two-dimensional classification problem is thus reconduced to a more simple one-dimensional one, which leads to a significant reduction of the classification procedure computational complexity.
机译:在本文中,我们提出了一种使用盲反卷积方法的纹理分类程序。具体而言,将纹理建模为由二进制激励驱动的线性系统的输出。我们表明,根据从二元激励的二维自相关函数(ACF)提取的一维切片计算出的特征可以表示纹理,以进行旋转不变分类。因此,将二维分类问题简化为更简单的一维分类问题,从而显着降低了分类过程的计算复杂度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号