首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >MILES: Multiple-Instance Learning via Embedded Instance Selection
【24h】

MILES: Multiple-Instance Learning via Embedded Instance Selection

机译:MILES:通过嵌入式实例选择进行多实例学习

获取原文
获取原文并翻译 | 示例

摘要

Multiple-instance problems arise from the situations where training class labels are attached to sets of samples (named bags), instead of individual samples within each bag (called instances). Most previous multiple-instance learning (MIL) algorithms are developed based on the assumption that a bag is positive if and only if at least one of its instances is positive. Although the assumption works well in a drug activity prediction problem, it is rather restrictive for other applications, especially those in the computer vision area. We propose a learning method, MILES (multiple-instance learning via embedded instance selection), which converts the multiple-instance learning problem to a standard supervised learning problem that does not impose the assumption relating instance labels to bag labels. MILES maps each bag into a feature space defined by the instances in the training bags via an instance similarity measure. This feature mapping often provides a large number of redundant or irrelevant features. Hence, 1-norm SVM is applied to select important features as well as construct classifiers simultaneously. We have performed extensive experiments. In comparison with other methods, MILES demonstrates competitive classification accuracy, high computation efficiency, and robustness to labeling uncertainty
机译:多实例问题是由以下情况引起的:将培训班标签贴在一组样本(称为袋子)上,而不是每个袋子内的单个样本(称为实例)上。多数先前的多实例学习(MIL)算法都是基于以下假设而得出的:当且仅当至少一个实例为肯定时,袋子才是肯定的。尽管该假设在药物活性预测问题中效果很好,但对于其他应用程序(尤其是计算机视觉领域的应用程序)却具有限制性。我们提出了一种学习方法MILES(通过嵌入式实例选择进行多实例学习),该方法将多实例学习问题转换为标准的有监督学习问题,该问题不强加将实例标签与包装袋标签相关的假设。 MILES通过实例相似性度量将每个包映射到由训练包中的实例定义的特征空间。此功能映射通常提供大量冗余或不相关的功能。因此,将1-范数支持向量机应用于选择重要特征并同时构造分类器。我们进行了广泛的实验。与其他方法相比,MILES展示了具有竞争力的分类准确性,高计算效率以及对标签不确定性的鲁棒性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号