首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A Discriminative Kernel-Based Approach to Rank Images from Text Queries
【24h】

A Discriminative Kernel-Based Approach to Rank Images from Text Queries

机译:基于判别核的基于文本查询的图像排名方法

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a discriminative model for the retrieval of images from text queries. Our approach formalizes the retrieval task as a ranking problem, and introduces a learning procedure optimizing a criterion related to the ranking performance. The proposed model hence addresses the retrieval problem directly and does not rely on an intermediate image annotation task, which contrasts with previous research. Moreover, our learning procedure builds upon recent work on the online learning of kernel-based classifiers. This yields an efficient, scalable algorithm, which can benefit from recent kernels developed for image comparison. The experiments performed over stock photography data show the advantage of our discriminative ranking approach over state-of-the-art alternatives (e.g. our model yields 26.3% average precision over the Corel dataset, which should be compared to 22.0%, for the best alternative model evaluated). Further analysis of the results shows that our model is especially advantageous over difficult queries such as queries with few relevant pictures or multiple-word queries.
机译:本文介绍了一种从文本查询中检索图像的判别模型。我们的方法将检索任务形式化为排名问题,并引入了优化与排名表现相关的准则的学习程序。因此,所提出的模型直接解决了检索问题,并且不依赖于中间图像标注任务,这与先前的研究形成了对比。此外,我们的学习程序建立在基于内核分类器在线学习的最新工作的基础上。这产生了一种有效的,可扩展的算法,该算法可以受益于为图像比较而开发的最新内核。在股票摄影数据上进行的实验表明,我们的判别排序方法优于最新的替代方案(例如,我们的模型在Corel数据集上的平均精度为26.3%,对于最佳方案,应与22.0%相比)模型评估)。对结果的进一步分析表明,我们的模型相对于诸如少量相关图片的查询或多词查询之类的困难查询特别有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号