首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Multiscale Categorical Object Recognition Using Contour Fragments
【24h】

Multiscale Categorical Object Recognition Using Contour Fragments

机译:使用轮廓片段的多尺度分类对象识别

获取原文
获取原文并翻译 | 示例

摘要

Psychophysical studies [9], [17] show that we can recognize objects using fragments of outline contour alone. This paper proposes a new automatic visual recognition system based only on local contour features, capable of localizing objects in space and scale. The system first builds a class-specific codebook of local fragments of contour using a novel formulation of chamfer matching. These local fragments allow recognition that is robust to within-class variation, pose changes, and articulation. Boosting combines these fragments into a cascaded sliding-window classifier, and mean shift is used to select strong responses as a final set of detections. We show how learning can be performed iteratively on both training and test sets to boot-strap an improved classifier. We compare with other methods based on contour and local descriptors in our detailed evaluation over 17 challenging categories, and obtain highly competitive results. The results confirm that contour is indeed a powerful cue for multi-scale and multi-class visual object recognition.
机译:心理物理学研究[9] [17]表明,我们可以仅使用轮廓轮廓的片段来识别物体。本文提出了一种仅基于局部轮廓特征的新型自动视觉识别系统,该系统能够在空间和尺度上定位对象。该系统首先使用倒角匹配的新公式构建轮廓局部片段的特定于类别的代码本。这些局部片段允许识别对类内变化,姿势变化和发音有鲁棒性的识别。 Boosting将这些片段组合到级联的滑动窗口分类器中,并且均值漂移用于选择强烈的响应作为最终的检测结果。我们展示了如何在训练和测试集上迭代执行学习,以引导改进的分类器。在对17个具有挑战性的类别进行详细评估时,我们将基于轮廓和局部描述符的其他方法进行了比较,并获得了极具竞争力的结果。结果证实轮廓确实是多尺度和多类视觉对象识别的有力提示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号