首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A Hierarchical Compositional Model for Face Representation and Sketching
【24h】

A Hierarchical Compositional Model for Face Representation and Sketching

机译:人脸表示和素描的层次组成模型

获取原文
获取原文并翻译 | 示例

摘要

We present a hierarchical-compositional face model as a three-layer And-Or graph to account for the structural variabilities over multiple resolutions. In the And-Or graph, an And-node represents a decomposition of certain graphical structure expanding to a set of Or-nodes with associated relations; an Or-node functions as a switch variable pointing to alternative And-nodes. Faces are represented hierarchically: layer one treats each face as a whole; layer two refines the local facial parts jointly as a set of individual templates; layer three divides face into 15 zones and models facial features like eyecorners or wrinkles. Transitions between layers are realized by measuring the minimum-description-length given the face image complexity. Diverse face representations are formed by drawing from hierarchical dictionaries of faces, parts and skin features. A sketch captures the most informative part of a face in a concise and potentially robust representation. However, generating good facial sketches is challenging because of the rich facial details and large structural variations, especially in the high-resolution images. The representing power of our generative model is demostrated by reconstructing high-resolution face images and generating cartoon sketches. Our model is useful for applications such as face recognition, non-photorealisitc rendering, super-esolution, and low-bit rate face coding.
机译:我们提出了一个三层的And-Or图作为层次结构的人脸模型,以说明多种分辨率下的结构变异性。在“与-或”图中,“与”节点表示某些图形结构的分解,扩展为具有关联关系的一组“或”节点。一个Or节点充当指向备用And节点的开关变量。人脸是分层表示的:第一层将每个人的脸视为一个整体;第二层作为一组单独的模板共同完善局部面部部分;第三层将脸部分为15个区域,并模拟眼角或皱纹等面部特征。在给定面部图像复杂度的情况下,通过测量最小描述长度可实现层之间的转换。通过从面部,部位和皮肤特征的分层字典中绘制来形成多样化的面部表示。草图以简洁且可能强大的表示形式捕获人脸中信息最多的部分。但是,由于丰富的面部细节和较大的结构变化(尤其是在高分辨率图像中),生成良好的面部草图非常具有挑战性。通过重建高分辨率的面部图像并生成卡通草图,可以演示我们生成模型的代表功能。我们的模型对于人脸识别,非光敏渲染,超分辨率和低比特率人脸编码等应用很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号