首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Tied Factor Analysis for Face Recognition across Large Pose Differences
【24h】

Tied Factor Analysis for Face Recognition across Large Pose Differences

机译:跨姿势差异的人脸识别的关联因素分析

获取原文
获取原文并翻译 | 示例

摘要

Face recognition algorithms perform very unreliably when the pose of the probe face is different from the gallery face: typical feature vectors vary more with pose than with identity. We propose a generative model that creates a one-to-many mapping from an idealized "identity" space to the observed data space. In identity space, the representation for each individual does not vary with pose. We model the measured feature vector as being generated by a pose-contingent linear transformation of the identity variable in the presence of Gaussian noise. We term this model "tied" factor analysis. The choice of linear transformation (factors) depends on the pose, but the loadings are constant (tied) for a given individual. We use the EM algorithm to estimate the linear transformations and the noise parameters from training data. We propose a probabilistic distance metric which allows a full posterior over possible matches to be established. We introduce a novel feature extraction process and investigate recognition performance using the FERET, XM2VTS and PIE databases. Recognition performance compares favourably to contemporary approaches.
机译:当探测脸的姿势与画廊脸的姿势不同时,脸部识别算法的执行将非常不可靠:典型的特征向量随姿势的变化多于与身份的变化。我们提出了一种生成模型,该模型创建从理想化的“身份”空间到观察到的数据空间的一对多映射。在身份空间中,每个人的表示都不会随姿势而变化。我们将测量的特征向量建模为在存在高斯噪声的情况下,通过对身份变量进行姿态/姿态线性变换生成的结果。我们称此模型为“附加”因子分析。线性变换(因子)的选择取决于姿势,但是对于给定的个体,载荷是恒定的(并列)。我们使用EM算法从训练数据中估计线性变换和噪声参数。我们提出了一种概率距离度量,该度量允许在可能的匹配之上建立完整的后验。我们介绍了一种新颖的特征提取过程,并使用FERET,XM2VTS和PIE数据库研究了识别性能。识别性能优于当代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号