首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Markov Random Field-Based Statistical Character Structure Modeling for Handwritten Chinese Character Recognition
【24h】

Markov Random Field-Based Statistical Character Structure Modeling for Handwritten Chinese Character Recognition

机译:基于马尔可夫随机场的统计汉字识别字符结构建模

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a statistical-structural character modeling method based on Markov random fields (MRFs) for handwritten Chinese character recognition (HCCR). The stroke relationships of a Chinese character reflect its structure, which can be statistically represented by the neighborhood system and clique potentials within the MRF framework. Based on the prior knowledge of character structures, we design the neighborhood system that accounts for the most important stroke relationships. We penalize the structurally mismatched stroke relationships with MRFs using the prior clique potentials, and derive the likelihood clique potentials from Gaussian mixture models, which encode the large variations of stroke relationships statistically. In the proposed HCCR system, we use the single-site likelihood clique potentials to extract many candidate strokes from character images, and use the pairsite clique potentials to determine the best structural match between the input candidate strokes and the MRF-based character models by relaxation labeling. The experiments on the KAIST character database demonstrate that MRFs can statistically model character structures, and work well in the HCCR system.
机译:提出了一种基于马尔可夫随机域(MRF)的统计结构字符建模方法,用于手写汉字识别(HCCR)。汉字的笔画关系反映了其结构,可以通过MRF框架内的邻域系统和集团势从统计学上表示。基于字符结构的先验知识,我们设计了解决最重要笔画关系的邻域系统。我们使用先验集团电位对结构不匹配的笔画关系进行惩罚,并从高斯混合模型中得出似然集团电位,该模型通过统计学方式对笔画关系进行大幅度编码。在提出的HCCR系统中,我们使用单位似然团势从字符图像中提取许多候选笔画,并使用成对位团势通过松弛确定输入候选笔画与基于MRF的角色模型之间的最佳结构匹配标签。在KAIST字符数据库上进行的实验表明,MRF可以对字符结构进行统计建模,并且可以在HCCR系统中很好地工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号