首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Robust Foreground Detection In Video Using Pixel Layers
【24h】

Robust Foreground Detection In Video Using Pixel Layers

机译:使用像素层对视频进行可靠的前景检测

获取原文
获取原文并翻译 | 示例

摘要

A framework for robust foreground detection that works under difficult conditions such as dynamic background and moderately moving camera is presented in this paper. The proposed method includes two main components: coarse scene representation as the union of pixel layers, and foreground detection in video by propagating these layers using a maximum-likelihood assignment. We first cluster into "layers" those pixels that share similar statistics. The entire scene is then modeled as the union of such nonparametric layer-models. An incoming pixel is detected as foreground if it does not adhere to these adaptive models of the background. A principled way of computing thresholds is used to achieve robust detection performance with a prespecified number of false alarms. Correlation between pixels in the spatial vicinity is exploited to deal with camera motion without precise registration or optical flow. The proposed technique adapts to changes in the scene, and allows to automatically convert persistent foreground objects to background and reconvert them to foreground when they become interesting. This simple framework addresses the important problem of robust foreground and unusual region detection, at about 10 frames per second on a standard laptop computer. The presentation of the proposed approach is complemented by results on challenging real data and comparisons with other standard techniques.
机译:本文提出了一种鲁棒的前景检测框架,该框架可在诸如动态背景和适度移动的摄像机等困难条件下工作。所提出的方法包括两个主要组成部分:作为像素层联合的粗略场景表示,以及通过使用最大似然分配传播这些层来进行视频中的前景检测。我们首先将共享相似统计信息的那些像素聚类为“层”。然后将整个场景建模为此类非参数图层模型的并集。如果传入像素不遵守背景的这些自适应模型,则将其检测为前景。计算阈值的一种原则方法用于实现具有预定数量的错误警报的鲁棒检测性能。利用空间附近像素之间的相关性来处理相机运动,而无需精确的配准或光流。所提出的技术适应场景中的变化,并允许将持久的前景对象自动转换为背景,并在它们变得有趣时将其重新转换为前景。这个简单的框架解决了鲁棒的前景和异常区域检测这一重要问题,在标准便携式计算机上每秒约10帧。提出的方法的提出是对具有挑战性的真实数据的结果以及与其他标准技术的比较的补充。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号