首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Dependent Multiple Cue Integration for Robust Tracking
【24h】

Dependent Multiple Cue Integration for Robust Tracking

机译:依赖的多个提示集成以实现可靠的跟踪

获取原文
获取原文并翻译 | 示例

摘要

We propose a new technique for fusing multiple cues to robustly segment an object from its background in video sequences that suffer from abrupt changes of both illumination and position of the target. Robustness is achieved by the integration of appearance and geometric object features and by their estimation using Bayesian filters, such as Kalman or particle filters. In particular, each filter estimates the state of a specific object feature, conditionally dependent on another feature estimated by a distinct filter. This dependence provides improved target representations, permitting us to segment it out from the background even in nonstationary sequences. Considering that the procedure of the Bayesian filters may be described by a "hypotheses generation-hypotheses correction" strategy, the major novelty of our methodology compared to previous approaches is that the mutual dependence between filters is considered during the feature observation, that is, into the "hypotheses-correction" stage, instead of considering it when generating the hypotheses. This proves to be much more effective in terms of accuracy and reliability. The proposed method is analytically justified and applied to develop a robust tracking system that adapts online and simultaneously the color space where the image points are represented, the color distributions, the contour of the object, and its bounding box. Results with synthetic data and real video sequences demonstrate the robustness and versatility of our method.
机译:我们提出了一种融合多种线索的新技术,以便在遭受光照和目标位置突然变化的视频序列中从背景中可靠地分割对象。鲁棒性是通过外观和几何对象特征的集成以及使用贝叶斯滤镜(例如卡尔曼滤镜或粒子滤镜)的估计来实现的。特别地,每个过滤器有条件地依赖于由不同的过滤器估计的另一个特征来估计特定对象特征的状态。这种依赖性提供了改进的目标表示,即使在非平稳序列中也可以将其从背景中分割出来。考虑到贝叶斯滤波器的过程可以用“假设生成-假设校正”策略来描述,与以前的方法相比,我们方法的主要新颖之处在于在特征观察过程中考虑了滤波器之间的相互依赖关系,即“假设校正”阶段,而不是在生成假设时考虑它。在准确性和可靠性方面,这被证明更为有效。所提出的方法经过分析证明是合理的,可用于开发一种鲁棒的跟踪系统,该系统可以同时在线适应表示图像点的颜色空间,颜色分布,对象的轮廓及其边界框。合成数据和真实视频序列的结果证明了我们方法的鲁棒性和多功能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号