【24h】

Face Photo-Sketch Synthesis and Recognition

机译:人脸素描合成与识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel face photo-sketch synthesis and recognition method using a multiscale Markov Random Fields (MRF) model. Our system has three components: 1) given a face photo, synthesizing a sketch drawing; 2) given a face sketch drawing, synthesizing a photo; and 3) searching for face photos in the database based on a query sketch drawn by an artist. It has useful applications for both digital entertainment and law enforcement. We assume that faces to be studied are in a frontal pose, with normal lighting and neutral expression, and have no occlusions. To synthesize sketch/photo images, the face region is divided into overlapping patches for learning. The size of the patches decides the scale of local face structures to be learned. From a training set which contains photo-sketch pairs, the joint photo-sketch model is learned at multiple scales using a multiscale MRF model. By transforming a face photo to a sketch (or transforming a sketch to a photo), the difference between photos and sketches is significantly reduced, thus allowing effective matching between the two in face sketch recognition. After the photo-sketch transformation, in principle, most of the proposed face photo recognition approaches can be applied to face sketch recognition in a straightforward way. Extensive experiments are conducted on a face sketch database including 606 faces, which can be downloaded from our Web site (http://mmlab.ie.cuhk.edu.hk/facesketch.html).
机译:在本文中,我们提出了一种使用多尺度马尔可夫随机场(MRF)模型的新型人脸素描合成和识别方法。我们的系统包括三个部分:1)给一张脸部照片,合成一个素描图; 2)给出一张面部素描图,合成一张照片; 3)根据艺术家绘制的查询草图在数据库中搜索人脸照片。它在数字娱乐和执法方面都有有用的应用程序。我们假设要研究的脸部处于正面姿势,具有正常照明和中性表情,并且没有遮挡。为了合成草图/照片图像,将脸部区域划分为重叠的小块以进行学习。斑块的大小决定了要学习的局部面部结构的大小。从包含照片素描对的训练集中,使用多尺度MRF模型在多个尺度上学习联合照片素描模型。通过将面部照片转换为草图(或将草图转换为照片),可以大大减少照片和草图之间的差异,从而在面部草图识别中实现两者之间的有效匹配。在完成照片草图转换之后,原则上,大多数建议的面部照片识别方法都可以直接方式应用于面部草图识别。在包括606张面孔的面孔草图数据库上进行了广泛的实验,可以从我们的网站(http://mmlab.ie.cuhk.edu.hk/facesketch.html)下载。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号