首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Rotational Invariance Based on Fourier Analysis in Polar and Spherical Coordinates
【24h】

Rotational Invariance Based on Fourier Analysis in Polar and Spherical Coordinates

机译:基于傅立叶分析的极坐标和球坐标的旋转不变性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, polar and spherical Fourier analysis are defined as the decomposition of a function in terms of eigenfunctions of the Laplacian with the eigenfunctions being separable in the corresponding coordinates. The proposed transforms provide effective decompositions of an image into basic patterns with simple radial and angular structures. The theory is compactly presented with an emphasis on the analogy to the normal Fourier transform. The relation between the polar or spherical Fourier transform and the normal Fourier transform is explored. As examples of applications, rotation-invariant descriptors based on polar and spherical Fourier coefficients are tested on pattern classification problems.
机译:在本文中,极坐标和球形傅立叶分析被定义为根据拉普拉斯算子的本征函数分解的函数,本征函数在相应坐标中是可分离的。所提出的变换将图像有效分解为具有简单径向和角度结构的基本图案。紧凑地介绍了该理论,着重于与正常傅立叶变换的类比。探索了极或球傅立叶变换与法向傅立叶变换之间的关系。作为应用示例,基于极性和球形傅立叶系数的旋转不变描述符在模式分类问题上进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号