首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >A Novel Algorithm for Detecting Singular Points from Fingerprint Images
【24h】

A Novel Algorithm for Detecting Singular Points from Fingerprint Images

机译:一种从指纹图像中检测奇异点的新算法

获取原文
获取原文并翻译 | 示例

摘要

Fingerprint analysis is typically based on the location and pattern of detected singular points in the images. These singular points (cores and deltas) not only represent the characteristics of local ridge patterns but also determine the topological structure (i.e., fingerprint type) and largely influence the orientation field. In this paper, we propose a novel algorithm for singular points detection. After an initial detection using the conventional Poincaré Index method, a so-called DORIC feature is used to remove spurious singular points. Then, the optimal combination of singular points is selected to minimize the difference between the original orientation field and the model-based orientation field reconstructed using the singular points. A core-delta relation is used as a global constraint for the final selection of singular points. Experimental results show that our algorithm is accurate and robust, giving better results than competing approaches. The proposed detection algorithm can also be used for more general 2D oriented patterns, such as fluid flow motion, and so forth.
机译:指纹分析通常基于图像中检测到的奇异点的位置和模式。这些奇异点(核心和三角形)不仅代表了局部山脊模式的特征,而且还决定了拓扑结构(即指纹类型),并在很大程度上影响了方向场。在本文中,我们提出了一种新的奇异点检测算法。在使用常规的庞加莱指数方法进行初始检测之后,使用了所谓的DORIC特征来去除虚假的奇异点。然后,选择奇异点的最佳组合以最小化原始方向场和使用奇点重建的基于模型的方向场之间的差异。核心-增量关系用作最终选择奇异点的全局约束。实验结果表明,我们的算法准确,鲁棒,比竞争方法具有更好的结果。提出的检测算法还可以用于更通用的2D方向性模式,例如流体流动运动等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号