首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >A Martingale Framework for Detecting Changes in Data Streams by Testing Exchangeability
【24h】

A Martingale Framework for Detecting Changes in Data Streams by Testing Exchangeability

机译:通过测试可交换性来检测数据流变化的Martingale框架

获取原文
获取原文并翻译 | 示例

摘要

In a data streaming setting, data points are observed sequentially. The data generating model may change as the data are streaming. In this paper, we propose detecting this change in data streams by testing the exchangeability property of the observed data. Our martingale approach is an efficient, nonparametric, one-pass algorithm that is effective on the classification, cluster, and regression data generating models. Experimental results show the feasibility and effectiveness of the martingale methodology in detecting changes in the data generating model for time-varying data streams. Moreover, we also show that: 1) An adaptive support vector machine (SVM) utilizing the martingale methodology compares favorably against an adaptive SVM utilizing a sliding window, and 2) a multiple martingale video-shot change detector compares favorably against standard shot-change detection algorithms.
机译:在数据流设置中,顺序观察数据点。数据生成模型可能会随着数据流式传输而改变。在本文中,我们建议通过测试观察数据的可交换性来检测数据流中的这种变化。我们的mar方法是一种有效的非参数单遍算法,对分类,聚类和回归数据生成模型有效。实验结果证明了ting方法在检测随时间变化的数据流的数据生成模型中的变化的可行性和有效性。此外,我们还表明:1)使用mar方法的自适应支持向量机(SVM)与使用滑动窗口的自适应SVM相比具有优势,并且2)多mar视频镜头变化检测器与标准镜头变化相比具有优势检测算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号