首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Handling Movement Epenthesis and Hand Segmentation Ambiguities in Continuous Sign Language Recognition Using Nested Dynamic Programming
【24h】

Handling Movement Epenthesis and Hand Segmentation Ambiguities in Continuous Sign Language Recognition Using Nested Dynamic Programming

机译:嵌套动态规划在连续手语识别中处理运动上肢和手分割歧义

获取原文
获取原文并翻译 | 示例

摘要

We consider two crucial problems in continuous sign language recognition from unaided video sequences. At the sentence level, we consider the movement epenthesis (me) problem and at the feature level, we consider the problem of hand segmentation and grouping. We construct a framework that can handle both of these problems based on an enhanced, nested version of the dynamic programming approach. To address movement epenthesis, a dynamic programming (DP) process employs a virtual me option that does not need explicit models. We call this the enhanced level building (eLB) algorithm. This formulation also allows the incorporation of grammar models. Nested within this eLB is another DP that handles the problem of selecting among multiple hand candidates. We demonstrate our ideas on four American Sign Language data sets with simple background, with the signer wearing short sleeves, with complex background, and across signers. We compared the performance with Conditional Random Fields (CRF) and Latent Dynamic-CRF-based approaches. The experiments show more than 40 percent improvement over CRF or LDCRF approaches in terms of the frame labeling rate. We show the flexibility of our approach when handling a changing context. We also find a 70 percent improvement in sign recognition rate over the unenhanced DP matching algorithm that does not accommodate the me effect.
机译:我们考虑了来自独立视频序列的连续手语识别中的两个关键问题。在句子级别,我们考虑运动上肢(me)问题,而在特征级别,我们考虑手的分割和分组问题。我们基于动态编程方法的增强嵌套版本构建了一个可以处理这两个问题的框架。为了解决运动问题,动态编程(DP)流程采用了虚拟me选项,该选项不需要显式模型。我们将此称为增强级别构建(eLB)算法。这种表述还允许合并语法模型。嵌套在此eLB中的是另一个DP,用于处理在多个候选手中进行选择的问题。我们在四个美国手语数据集上展示了我们的想法,这些数据集背景简单,签名人穿着短袖,背景复杂且签名人不一。我们将性能与条件随机场(CRF)和基于潜在动态CRF的方法进行了比较。实验表明,相对于CRF或LDCRF方法,帧标记率提高了40%以上。当处理变化的上下文时,我们展示了我们方法的灵活性。我们还发现,与不适应me效果的未增强DP匹配算法相比,符号识别率提高了70%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号