首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Multiple Object Tracking Using K-Shortest Paths Optimization
【24h】

Multiple Object Tracking Using K-Shortest Paths Optimization

机译:使用K最短路径优化进行多对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

Multi-object tracking can be achieved by detecting objects in individual frames and then linking detections across frames. Such an approach can be made very robust to the occasional detection failure: If an object is not detected in a frame but is in previous and following ones, a correct trajectory will nevertheless be produced. By contrast, a false-positive detection in a few frames will be ignored. However, when dealing with a multiple target problem, the linking step results in a difficult optimization problem in the space of all possible families of trajectories. This is usually dealt with by sampling or greedy search based on variants of Dynamic Programming which can easily miss the global optimum. In this paper, we show that reformulating that step as a constrained flow optimization results in a convex problem. We take advantage of its particular structure to solve it using the k-shortest paths algorithm, which is very fast. This new approach is far simpler formally and algorithmically than existing techniques and lets us demonstrate excellent performance in two very different contexts.
机译:通过检测单个帧中的对象,然后跨帧链接检测,可以实现多对象跟踪。可以使这种方法对偶然的检测失败非常鲁棒:如果在帧中未检测到对象,但在前一个和后一个对象中检测到对象,则仍会产生正确的轨迹。相反,在几帧中的假阳性检测将被忽略。但是,当处理多目标问题时,链接步骤会在所有可能的轨迹族空间中导致一个困难的优化问题。这通常通过基于动态编程的变体进行采样或贪婪搜索来解决,这些变体很容易错过全局最优值。在本文中,我们表明将步骤重新约束为约束流优化会导致凸问题。我们利用它的特殊结构,使用k最短路径算法来解决它,该算法非常快。这种新方法在形式上和算法上都比现有技术简单得多,并且让我们展示了在两种截然不同的情况下的出色性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号