首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Robust Object Tracking with Online Multiple Instance Learning
【24h】

Robust Object Tracking with Online Multiple Instance Learning

机译:在线多实例学习的强大对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the problem of tracking an object in a video given its location in the first frame and no other information. Recently, a class of tracking techniques called ȁC;tracking by detectionȁD; has been shown to give promising results at real-time speeds. These methods train a discriminative classifier in an online manner to separate the object from the background. This classifier bootstraps itself by using the current tracker state to extract positive and negative examples from the current frame. Slight inaccuracies in the tracker can therefore lead to incorrectly labeled training examples, which degrade the classifier and can cause drift. In this paper, we show that using Multiple Instance Learning (MIL) instead of traditional supervised learning avoids these problems and can therefore lead to a more robust tracker with fewer parameter tweaks. We propose a novel online MIL algorithm for object tracking that achieves superior results with real-time performance. We present thorough experimental results (both qualitative and quantitative) on a number of challenging video clips.
机译:在本文中,我们针对在视频中的对象在第一帧中没有其他信息的情况下跟踪对象的问题。最近,一类跟踪技术称为ȁC;通过检测进行跟踪ȁD;已显示出可以实时提供令人鼓舞的结果。这些方法以在线方式训练判别式分类器,以将对象与背景分离。该分类器通过使用当前跟踪器状态从当前帧中提取正例和负例来进行自我引导。因此,跟踪器中的轻微错误会导致标记错误的训练示例,从而使分类器降级并导致漂移。在本文中,我们证明了使用多实例学习(MIL)代替传统的有监督学习可以避免这些问题,因此可以通过较少的参数调整来实现更强大的跟踪器。我们提出了一种用于目标跟踪的新颖在线MIL算法,该算法可实现实时性能,并且效果卓越。我们在许多具有挑战性的视频剪辑上提供了详尽的实验结果(定性和定量)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号