首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Improving Offline Handwritten Text Recognition with Hybrid HMM/ANN Models
【24h】

Improving Offline Handwritten Text Recognition with Hybrid HMM/ANN Models

机译:使用HMM / ANN混合模型改善离线手写文本识别

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes the use of hybrid Hidden Markov Model (HMM)/Artificial Neural Network (ANN) models for recognizing unconstrained offline handwritten texts. The structural part of the optical models has been modeled with Markov chains, and a Multilayer Perceptron is used to estimate the emission probabilities. This paper also presents new techniques to remove slope and slant from handwritten text and to normalize the size of text images with supervised learning methods. Slope correction and size normalization are achieved by classifying local extrema of text contours with Multilayer Perceptrons. Slant is also removed in a nonuniform way by using Artificial Neural Networks. Experiments have been conducted on offline handwritten text lines from the IAM database, and the recognition rates achieved, in comparison to the ones reported in the literature, are among the best for the same task.
机译:本文提出了使用混合隐马尔可夫模型(HMM)/人工神经网络(ANN)模型来识别不受约束的离线手写文本的方法。光学模型的结构部分已使用马尔可夫链进行了建模,并使用了多层感知器来估计发射概率。本文还提出了新技术,可通过监督学习方法消除手写文本的倾斜和倾斜,并标准化文本图像的大小。通过使用多层感知器对文本轮廓的局部极值进行分类,可以实现坡度校正和尺寸归一化。还可以通过使用人工神经网络以不均匀的方式消除倾斜。已经对IAM数据库中的离线手写文本行进行了实验,与文献报道的结果相比,实现的识别率在同一任务中是最好的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号