首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Efficient 3D Geometric and Zernike Moments Computation from Unstructured Surface Meshes
【24h】

Efficient 3D Geometric and Zernike Moments Computation from Unstructured Surface Meshes

机译:非结构化表面网格的高效3D几何和Zernike矩计算

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N^9 to N^6. The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N^3. In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N^4, while the previously proposed algorithm is of order N^6. The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.
机译:本文介绍并评估了一种快速精确算法和一系列快速近似算法,用于从非结构化三角形曲面网格计算3D几何矩。与基于体积网格的算法相比,基于对象表面降低了这些算法的计算复杂性。相反,它仅可用于计算均匀物体的几何矩。这种优势和限制与其他基于对象边界的建议算法共享。相对于先前提出的从N ^ 9到N ^ 6的精确算法,所提出的精确算法降低了用于计算直到N阶的几何矩的计算复杂度。近似级数算法显示为三角形大小与对象大小之间的比率的幂级数,可以按任意期望的程度将其截断。三角形的数量和质量越高,近似度越好。该近似算法将计算复杂度降低到N ^ 3。此外,本文介绍了一种从计算的几何矩计算3D Zernike矩的快速算法,其计算复杂度为N ^ 4,而先前提出的算法的阶数为N ^ 6。所提出的近似算法引入的误差以不同的形状进行评估,并根据误差评估成本效益比,并针对不同的矩阶分析计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号