首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Shape Retrieval Using Hierarchical Total Bregman Soft Clustering
【24h】

Shape Retrieval Using Hierarchical Total Bregman Soft Clustering

机译:使用分层总Bregman软聚类进行形状检索

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the family of total Bregman divergences (tBDs) as an efficient and robust “distance” measure to quantify the dissimilarity between shapes. We use the tBD-based ell_1-norm center as the representative of a set of shapes, and call it the t-center. First, we briefly present and analyze the properties of the tBDs and t-centers following our previous work in [1]. Then, we prove that for any tBD, there exists a distribution which belongs to the lifted exponential family (lEF) of statistical distributions. Further, we show that finding the maximum a posteriori (MAP) estimate of the parameters of the lifted exponential family distribution is equivalent to minimizing the tBD to find the t-centers. This leads to a new clustering technique, namely, the total Bregman soft clustering algorithm. We evaluate the tBD, t-center, and the soft clustering algorithm on shape retrieval applications. Our shape retrieval framework is composed of three steps: 1) extraction of the shape boundary points, 2) affine alignment of the shapes and use of a Gaussian mixture model (GMM) [2], [3], [4] to represent the aligned boundaries, and 3) comparison of the GMMs using tBD to find the best matches given a query shape. To further speed up the shape retrieval algorithm, we perform hierarchical clustering of the shapes using our total Bregman soft clustering algorithm. This enables us to compare the query with a small subset of shapes which are chosen to be the cluster t-centers. We evaluate our method on various public domain 2D and 3D databases, and demonstrate comparable or better results than state-of-the-art retrieval techniques.
机译:在本文中,我们将Bregman总散度(tBD)族视为一种有效且鲁棒的“距离”度量,以量化形状之间的差异。我们使用基于tBD的ell_1-norm中心作为一组形状的代表,并将其称为t中心。首先,根据我们先前在[1]中的工作,我们简要介绍并分析了tBD和t中心的属性。然后,我们证明对于任何tBD,都存在一个属于统计分布的提升指数族(lEF)的分布。此外,我们表明,找到提升的指数族分布的参数的最大后验(MAP)估计等效于最小化tBD来找到t中心。这导致了一种新的聚类技术,即总Bregman软聚类算法。我们在形状检索应用程序中评估了tBD,t中心和软聚类算法。我们的形状检索框架包括三个步骤:1)提取形状边界点,2)形状的仿射对齐,并使用高斯混合模型(GMM)[2],[3],[4]表示对齐的边界,以及3)使用tBD比较GMM以找到给定查询形状的最佳匹配。为了进一步加速形状检索算法,我们使用总的Bregman软聚类算法对形状进行分层聚类。这使我们能够将查询与形状的一小部分子集进行比较,这些子集被选择为聚类t中心。我们在各种公共领域2D和3D数据库上评估我们的方法,并证明与最新检索技术相比具有可比或更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号