首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images
【24h】

RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images

机译:RASL:线性相关图像的稀疏和低秩分解实现稳健对齐

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the problem of simultaneously aligning a batch of linearly correlated images despite gross corruption (such as occlusion). Our method seeks an optimal set of image domain transformations such that the matrix of transformed images can be decomposed as the sum of a sparse matrix of errors and a low-rank matrix of recovered aligned images. We reduce this extremely challenging optimization problem to a sequence of convex programs that minimize the sum of ell^1-norm and nuclear norm of the two component matrices, which can be efficiently solved by scalable convex optimization techniques. We verify the efficacy of the proposed robust alignment algorithm with extensive experiments on both controlled and uncontrolled real data, demonstrating higher accuracy and efficiency than existing methods over a wide range of realistic misalignments and corruptions.
机译:本文研究了尽管严重损坏(例如遮挡)但同时对齐一批线性相关图像的问题。我们的方法寻求图像域变换的最佳集合,以便可以将变换后的图像矩阵分解为错误的稀疏矩阵和恢复的对齐图像的低秩矩阵之和。我们将这个极富挑战性的优化问题简化为一系列凸程序,以最小化两个分量矩阵的ell ^ 1-范数和核范数之和,这可以通过可扩展的凸优化技术有效地解决。我们通过对可控和不可控真实数据进行广泛的实验来验证所提出的鲁棒对准算法的有效性,在广泛的实际不对准和损坏情况下,与现有方法相比,其显示出更高的准确性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号