首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Optimized Data Fusion for Kernel k-Means Clustering
【24h】

Optimized Data Fusion for Kernel k-Means Clustering

机译:针对内核k均值聚类的优化数据融合

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel optimized kernel k-means algorithm (OKKC) to combine multiple data sources for clustering analysis. The algorithm uses an alternating minimization framework to optimize the cluster membership and kernel coefficients as a nonconvex problem. In the proposed algorithm, the problem to optimize the cluster membership and the problem to optimize the kernel coefficients are all based on the same Rayleigh quotient objective; therefore the proposed algorithm converges locally. OKKC has a simpler procedure and lower complexity than other algorithms proposed in the literature. Simulated and real-life data fusion applications are experimentally studied, and the results validate that the proposed algorithm has comparable performance, moreover, it is more efficient on large-scale data sets. (The Matlab implementation of OKKC algorithm is downloadable from http://homes.esat.kuleuven.be/~sistawww/bio/syu/okkc.html.)
机译:本文提出了一种新颖的优化内核k均值算法(OKKC),可以将多个数据源进行聚类分析。该算法使用交替最小化框架来优化群集成员和内核系数,这是一个非凸问题。该算法中,聚类隶属度优化问题和核系数优化问题均基于相同的瑞利商目标。因此,所提出的算法在局部收敛。与文献中提出的其他算法相比,OKKC具有更简单的过程和更低的复杂度。对模拟和现实生活中的数据融合应用进行了实验研究,结果证明了该算法具有可比的性能,而且在大规模数据集上效率更高。 (可以从http://homes.esat.kuleuven.be/~sistawww/bio/syu/okkc.html下载OKKC算法的Matlab实现。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号