首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution
【24h】

The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution

机译:光场相机:景深扩展,混叠和超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Portable light field (LF) cameras have demonstrated capabilities beyond conventional cameras. In a single snapshot, they enable digital image refocusing and 3D reconstruction. We show that they obtain a larger depth of field but maintain the ability to reconstruct detail at high resolution. In fact, all depths are approximately focused, except for a thin slab where blur size is bounded, i.e., their depth of field is essentially inverted compared to regular cameras. Crucial to their success is the way they sample the LF, trading off spatial versus angular resolution, and how aliasing affects the LF. We show that applying traditional multiview stereo methods to the extracted low-resolution views can result in reconstruction errors due to aliasing. We address these challenges using an explicit image formation model, and incorporate Lambertian and texture preserving priors to reconstruct both scene depth and its superresolved texture in a variational Bayesian framework, eliminating aliasing by fusing multiview information. We demonstrate the method on synthetic and real images captured with our LF camera, and show that it can outperform other computational camera systems.
机译:便携式光场(LF)摄像机已经证明了超越传统摄像机的功能。在单个快照中,它们可以实现数字图像重新聚焦和3D重建。我们表明,它们获得了更大的景深,但仍保持了在高分辨率下重建细节的能力。实际上,除了限制模糊大小的薄平板之外,所有深度都近似聚焦,即与常规相机相比,它们的景深实质上是倒置的。他们成功的关键是他们对低频采样的方式,在空间分辨率与角度分辨率之间进行权衡以及混叠如何影响低频。我们表明,将传统的多视图立体方法应用于提取的低分辨率视图可能会由于混叠而导致重建错误。我们使用显式图像形成模型解决这些挑战,并结合使用Lambertian和纹理保留先验以在变分贝叶斯框架中重构场景深度及其超分辨纹理,并通过融合多视图信息消除混叠。我们在用LF相机拍摄的合成图像和真实图像上演示了该方法,并表明它可以胜过其他计算相机系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号