首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Divide, Conquer and Coordinate: Globally Coordinated Switching Linear Dynamical System
【24h】

Divide, Conquer and Coordinate: Globally Coordinated Switching Linear Dynamical System

机译:分度,征服和坐标:全局协调切换线性动力系统

获取原文
获取原文并翻译 | 示例

摘要

The goal of this work is to learn a parsimonious and informative representation for high-dimensional time series. Conceptually, this comprises two distinct yet tightly coupled tasks: learning a low-dimensional manifold and modeling the dynamical process. These two tasks have a complementary relationship as the temporal constraints provide valuable neighborhood information for dimensionality reduction and, conversely, the low-dimensional space allows dynamics to be learned efficiently. Solving these two tasks simultaneously allows important information to be exchanged mutually. If nonlinear models are required to capture the rich complexity of time series, then the learning problem becomes harder as the nonlinearities in both tasks are coupled. A divide, conquer, and coordinate method is proposed. The solution approximates the nonlinear manifold and dynamics using simple piecewise linear models. The interactions and coordinations among the linear models are captured in a graphical model. The model structure setup and parameter learning are done using a variational Bayesian approach, which enables automatic Bayesian model structure selection, hence solving the problem of overfitting. By exploiting the model structure, efficient inference and learning algorithms are obtained without oversimplifying the model of the underlying dynamical process. Evaluation of the proposed framework with competing approaches is conducted in three sets of experiments: dimensionality reduction and reconstruction using synthetic time series, video synthesis using a dynamic texture database, and human motion synthesis, classification, and tracking on a benchmark data set. In all experiments, the proposed approach provides superior performance.
机译:这项工作的目的是学习高维时间序列的简约和有益的表示形式。从概念上讲,这包括两个截然不同但紧密耦合的任务:学习低维流形并为动力学过程建模。这两个任务具有互补关系,因为时间约束为降维提供了有价值的邻域信息,反之,低维空间则可以有效地学习动力学。同时解决这两个任务,可以相互交换重要信息。如果需要非线性模型来捕获时间序列的丰富复杂性,则随着两个任务中的非线性耦合,学习问题将变得更加棘手。提出了一种分治法。该解决方案使用简单的分段线性模型来近似非线性流形和动力学。线性模型之间的相互作用和协调被捕获在图形模型中。使用变分贝叶斯方法完成模型结构的建立和参数学习,这使得能够自动选择贝叶斯模型结构,从而解决了过拟合的问题。通过利用模型结构,可以获得有效的推理和学习算法,而无需过度简化基础动力学过程的模型。使用竞争性方法对提议的框架进行评估的过程包括三组实验:使用合成时间序列进行降维和重构,使用动态纹理数据库进行视频合成以及人体运动合成,分类以及在基准数据集上进行跟踪。在所有实验中,提出的方法均提供了卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号