首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Calibration by Correlation Using Metric Embedding from Nonmetric Similarities
【24h】

Calibration by Correlation Using Metric Embedding from Nonmetric Similarities

机译:使用非度量相似性的度量嵌入,通过关联进行校准

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new intrinsic calibration method that allows us to calibrate a generic single-view point camera just by waving it around. From the video sequence obtained while the camera undergoes random motion, we compute the pairwise time correlation of the luminance signal for a subset of the pixels. We show that if the camera undergoes a random uniform motion, then the pairwise correlation of any pixels pair is a function of the distance between the pixel directions on the visual sphere. This leads to formalizing calibration as a problem of metric embedding from nonmetric measurements: We want to find the disposition of pixels on the visual sphere from similarities that are an unknown function of the distances. This problem is a generalization of multidimensional scaling (MDS) that has so far resisted a comprehensive observability analysis (can we reconstruct a metrically accurate embedding?) and a solid generic solution (how do we do so?). We show that the observability depends both on the local geometric properties (curvature) as well as on the global topological properties (connectedness) of the target manifold. We show that, in contrast to the euclidean case, on the sphere we can recover the scale of the points distribution, therefore obtaining a metrically accurate solution from nonmetric measurements. We describe an algorithm that is robust across manifolds and can recover a metrically accurate solution when the metric information is observable. We demonstrate the performance of the algorithm for several cameras (pin-hole, fish-eye, omnidirectional), and we obtain results comparable to calibration using classical methods. Additional synthetic benchmarks show that the algorithm performs as theoretically predicted for all corner cases of the observability analysis.
机译:本文提出了一种新的固有校准方法,该方法使我们能够通过挥舞来校准通用的单视点相机。根据在摄像机进行随机运动时获得的视频序列,我们为像素子集计算亮度信号的成对时间相关性。我们表明,如果相机经历了随机的匀速运动,则任何像素对的成对相关性都是视觉球面上像素方向之间距离的函数。这导致将校准形式化为来自非度量测量的度量嵌入问题:我们想根据距离的未知函数相似性找到像素在视觉球体上的位置。这个问题是多维缩放(MDS)的一般化,到目前为止,它一直无法进行全面的可观察性分析(我们可以重建度量精确的嵌入吗?)和可靠的通用解决方案(我们怎么做?)。我们表明,可观测性不仅取决于目标流形的局部几何特性(曲率),还取决于整体拓扑特性(连通性)。我们表明,与欧几里得情形相反,在球体上我们可以恢复点分布的范围,因此可以从非度量测量中获得度量精确的解决方案。我们描述了一种在流形上很健壮的算法,该算法可以在度量信息可观察到时恢复度量精确的解决方案。我们演示了该算法对几种相机(针孔,鱼眼,全向)的性能,并获得了与使用经典方法进行校准可比的结果。其他综合基准表明,对于可观察性分析的所有极端情况,该算法的性能均符合理论预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号