首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Hough Forest Random Field for Object Recognition and Segmentation
【24h】

Hough Forest Random Field for Object Recognition and Segmentation

机译:霍夫森林随机场用于目标识别和分割

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new computational framework for detecting and segmenting object occurrences in images. We combine Hough forest (HF) and conditional random field (CRF) into HFRF to assign labels of object classes to image regions. HF captures intrinsic and contextual properties of objects. CRF then fuses the labeling hypotheses generated by HF for identifying every object occurrence. Interaction between HF and CRF happens in HFRF inference, which uses the Metropolis-Hastings algorithm. The Metropolis-Hastings reversible jumps depend on two ratios of proposal and posterior distributions. Instead of estimating four distributions, we directly compute the two ratios using HF. In leaf nodes, HF records class histograms of training examples and information about their configurations. This evidence is used in inference for nonparametric estimation of the two distribution ratios. Our empirical evaluation on benchmark datasets demonstrates higher average precision rates of object detection, smaller object segmentation error, and faster convergence rates of our inference, relative to the state of the art. The paper also presents theoretical error bounds of HF and HFRF applied to a two-class object detection and segmentation.
机译:本文提出了一种用于检测和分割图像中物体出现的新计算框架。我们将霍夫森林(HF)和条件随机场(CRF)合并为HFRF,以将对象类别的标签分配给图像区域。 HF捕获对象的固有和上下文属性。然后,CRF融合了HF生成的标记假设,以识别每个物体的出现。 HF和CRF之间的交互发生在HFRF推论中,该推论使用Metropolis-Hastings算法。 Metropolis-Hastings可逆跳取决于投标和后验分布的两个比率。无需估算四个分布,而是直接使用HF计算两个比率。在叶节点中,HF记录训练示例的类直方图以及有关其配置的信息。该证据用于推论两个分布比率的非参数估计。我们对基准数据集的经验评估表明,相对于现有技术,目标检测的平均准确率更高,目标分割误差更小,推理的收敛速度更快。本文还介绍了应用于两类目标检测和分割的HF和HFRF的理论误差范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号