首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Time Series Analysis Using Geometric Template Matching
【24h】

Time Series Analysis Using Geometric Template Matching

机译:使用几何模板匹配进行时间序列分析

获取原文
获取原文并翻译 | 示例

摘要

We present a novel framework for analyzing univariate time series data. At the heart of the approach is a versatile algorithm for measuring the similarity of two segments of time series called geometric template matching (GeTeM). First, we use GeTeM to compute a similarity measure for clustering and nearest-neighbor classification. Next, we present a semi-supervised learning algorithm that uses the similarity measure with hierarchical clustering in order to improve classification performance when unlabeled training data are available. Finally, we present a boosting framework called TDEBOOST, which uses an ensemble of GeTeM classifiers. TDEBOOST augments the traditional boosting approach with an additional step in which the features used as inputs to the classifier are adapted at each step to improve the training error. We empirically evaluate the proposed approaches on several datasets, such as accelerometer data collected from wearable sensors and ECG data.
机译:我们提出了一种用于分析单变量时间序列数据的新颖框架。该方法的核心是一种通用的算法,用于测量两个时间序列段的相似性,称为几何模板匹配(GeTeM)。首先,我们使用GeTeM为聚类和最近邻分类计算相似度。接下来,我们提出一种半监督学习算法,该算法将相似性度量与分层聚类一起使用,以在没有标签的训练数据可用时提高分类性能。最后,我们提出了一个名为TDEBOOST的增强框架,该框架使用GeTeM分类器的集合。 TDEBOOST通过增加一个额外步骤来增强传统的增强方法,其中在每个步骤中都将用作分类器输入的功能进行调整,以改善训练误差。我们根据经验评估了几种数据集上提出的方法,例如从可穿戴传感器收集的加速度计数据和ECG数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号