首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Pairwise Rotation Invariant Co-Occurrence Local Binary Pattern
【24h】

Pairwise Rotation Invariant Co-Occurrence Local Binary Pattern

机译:成对旋转不变共现局部二进制模式

获取原文
获取原文并翻译 | 示例

摘要

Designing effective features is a fundamental problem in computer vision. However, it is usually difficult to achieve a great tradeoff between discriminative power and robustness. Previous works shown that spatial co-occurrence can boost the discriminative power of features. However the current existing co-occurrence features are taking few considerations to the robustness and hence suffering from sensitivity to geometric and photometric variations. In this work, we study the Transform Invariance (TI) of co-occurrence features. Concretely we formally introduce a Pairwise Transform Invariance (PTI) principle, and then propose a novel Pairwise Rotation Invariant Co-occurrence Local Binary Pattern (PRICoLBP) feature, and further extend it to incorporate multi-scale, multi-orientation, and multi-channel information. Different from other LBP variants, PRICoLBP can not only capture the spatial context co-occurrence information effectively, but also possess rotation invariance. We evaluate PRICoLBP comprehensively on nine benchmark data sets from five different perspectives, e.g., encoding strategy, rotation invariance, the number of templates, speed, and discriminative power compared to other LBP variants. Furthermore we apply PRICoLBP to six different but related applications—texture, material, flower, leaf, food, and scene classification, and demonstrate that PRICoLBP is efficient, effective, and of a well-balanced tradeoff between the discriminative power and robustness.
机译:设计有效的功能是计算机视觉中的基本问题。但是,通常很难在区分能力和鲁棒性之间取得很大的折衷。先前的工作表明,空间共现可以增强特征的判别能力。然而,当前现有的共现特征很少考虑健壮性,因此遭受对几何和光度变化的敏感性。在这项工作中,我们研究了共现特征的变换不变性(TI)。具体来说,我们正式引入成对变换不变性(PTI)原理,然后提出一种新颖的成对旋转不变共现局部二进制模式(PRICoLBP)功能,并进一步扩展它以纳入多尺度,多尺度定位和多渠道信息。与其他LBP变体不同,PRICoLBP不仅可以有效地捕获空间上下文共现信息,而且具有旋转不变性。我们从五个不同的角度对九个基准数据集进行了全面评估PRICoLBP,例如与其他LBP变体相比,编码策略,旋转不变性,模板数量,速度和判别能力。此外,我们将PRICoLBP应用于六个不同但相关的应用程序-纹理,材质,花朵,叶子,食物和场景分类,并证明PRICoLBP是高效,有效的,并且在区分能力和鲁棒性之间取得了很好的平衡。 >

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号