首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Statistical Inverse Ray Tracingfor Image-Based 3D Modeling
【24h】

Statistical Inverse Ray Tracingfor Image-Based 3D Modeling

机译:统计逆射线追踪用于基于图像的3D建模

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new formulation and solution to image-based 3D modeling (aka “multi-view stereo”) based on generative statistical modeling and inference. The proposed new approach, named statistical inverse ray tracing, models and estimates the occlusion relationship accurately through optimizing a physically sound image generation model based on volumetric ray tracing. Together with geometric priors, they are put together into a Bayesian formulation known as Markov random field (MRF) model. This MRF model is different from typical MRFs used in image analysis in the sense that the ray clique, which models the ray-tracing process, consists of thousands of random variables instead of two to dozens. To handle the computational challenges associated with large clique size, an algorithm with linear computational complexity is developed by exploiting, using dynamic programming, the recursive chain structure of the ray clique. We further demonstrate the benefit of exact modeling and accurate estimation of the occlusion relationship by evaluating the proposed algorithm on several challenging data sets.
机译:本文提出了一种基于生成统计建模和推理的基于图像的3D建模(又称为“多视图立体”)的新公式和解决方案。所提出的新方法称为统计逆射线追踪,它通过优化基于体射线追踪的物理声像生成模型来精确建模和估计遮挡关系。与几何先验一起,它们被组合成称为Markov随机场(MRF)模型的贝叶斯公式。这个MRF模型与用于图像分析的典型MRF不同,因为在模拟射线跟踪过程的射线团由数千个随机变量组成,而不是由两个到几十个组成。为了解决与大型团簇相关的计算难题,通过使用动态编程开发射线团簇的递归链结构,开发了一种具有线性计算复杂度的算法。通过在多个具有挑战性的数据集上评估该算法,进一步证明了精确建模和准确估计遮挡关系的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号