首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A Markov Random Field Groupwise Registration Framework for Face Recognition
【24h】

A Markov Random Field Groupwise Registration Framework for Face Recognition

机译:人脸识别的马尔可夫随机场分组配准框架

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new framework for tackling face recognition problem. The face recognition problem is formulated as groupwise deformable image registration and feature matching problem. The main contributions of the proposed method lie in the following aspects: (1) Each pixel in a facial image is represented by an anatomical signature obtained from its corresponding most salient scale local region determined by the survival exponential entropy (SEE) information theoretic measure. (2) Based on the anatomical signature calculated from each pixel, a novel Markov random field based groupwise registration framework is proposed to formulate the face recognition problem as a feature guided deformable image registration problem. The similarity between different facial images are measured on the nonlinear Riemannian manifold based on the deformable transformations. (3) The proposed method does not suffer from the generalizability problem which exists commonly in learning based algorithms. The proposed method has been extensively evaluated on four publicly available databases: FERET, CAS-PEAL-R1, FRGC ver 2.0, and the LFW. It is also compared with several state-of-the-art face recognition approaches, and experimental results demonstrate that the proposed method consistently achieves the highest recognition rates among all the methods under comparison.
机译:在本文中,我们提出了一种解决人脸识别问题的新框架。人脸识别问题被表述为按组可变形图像配准和特征匹配问题。所提出的方法的主要贡献在于以下方面:(1)通过从生存指数熵(SEE)信息理论测度确定的其对应的最显着尺度局部区域获得的解剖特征来表示面部图像中的每个像素。 (2)基于从每个像素算出的解剖特征,提出了一种基于马尔可夫随机场的分组配准框架,将人脸识别问题表达为特征导向的可变形图像配准问题。基于可变形变换,在非线性黎曼流形上测量不同面部图像之间的相似性。 (3)所提出的方法不存在普遍存在于基于学习的算法中的普遍性问题。所提出的方法已经在四个可公开获得的数据库上进行了广泛的评估:FERET,CAS-PEAL-R1,FRGC ver 2.0和LFW。它也与几种最先进的人脸识别方法进行了比较,实验结果表明,在所比较的所有方法中,该方法始终能够实现最高的识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号