首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A Morphological Approach to Curvature-Based Evolution of Curves and Surfaces
【24h】

A Morphological Approach to Curvature-Based Evolution of Curves and Surfaces

机译:基于曲率的曲线和曲面演化的形态学方法

获取原文
获取原文并翻译 | 示例

摘要

We introduce new results connecting differential and morphological operators that provide a formal and theoretically grounded approach for stable and fast contour evolution. Contour evolution algorithms have been extensively used for boundary detection and tracking in computer vision. The standard solution based on partial differential equations and level-sets requires the use of numerical methods of integration that are costly computationally and may have stability issues. We present a morphological approach to contour evolution based on a new curvature morphological operator valid for surfaces of any dimension. We approximate the numerical solution of the curve evolution PDE by the successive application of a set of morphological operators defined on a binary level-set and with equivalent infinitesimal behavior. These operators are very fast, do not suffer numerical stability issues, and do not degrade the level set function, so there is no need to reinitialize it. Moreover, their implementation is much easier since they do not require the use of sophisticated numerical algorithms. We validate the approach providing a morphological implementation of the geodesic active contours, the active contours without borders, and turbopixels. In the experiments conducted, the morphological implementations converge to solutions equivalent to those achieved by traditional numerical solutions, but with significant gains in simplicity, speed, and stability.
机译:我们介绍了连接微分和形态学算子的新结果,这些算子为稳定和快速的轮廓演化提供了正式且理论上扎实的方法。轮廓演化算法已被广泛用于计算机视觉中的边界检测和跟踪。基于偏微分方程和水平集的标准解决方案需要使用积分的数值方法,这些方法的计算成本很高,并且可能存在稳定性问题。我们提出了一种基于形态学的轮廓演化方法,该方法基于对任何尺寸的表面均有效的新曲率形态学算子。我们通过连续应用在二进制水平集上定义的且具有等效无穷小行为的一组形态学算子,来近似曲线演化PDE的数值解。这些运算符非常快,不会出现数值稳定性问题,并且不会降低级别设置函数,因此无需重新初始化它。此外,由于它们不需要使用复杂的数值算法,因此它们的实现要容易得多。我们验证了提供测地线活动轮廓,无边界活动轮廓和涡轮像素的形态学实现的方法。在进行的实验中,形态学实现收敛到与传统数值解决方案等效的解决方案,但在简单性,速度和稳定性方面都有显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号