首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Bayesian Joint Modelling for Object Localisation in Weakly Labelled Images
【24h】

Bayesian Joint Modelling for Object Localisation in Weakly Labelled Images

机译:贝叶斯联合模型在弱标签图像中的目标定位

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of localisation of objects as bounding boxes in images and videos with weak labels. This weakly supervised object localisation problem has been tackled in the past using discriminative models where each object class is localised independently from other classes. In this paper, a novel framework based on Bayesian joint topic modelling is proposed, which differs significantly from the existing ones in that: (1) All foreground object classes are modelled jointly in a single generative model that encodes multiple object co-existence so that “explaining away” inference can resolve ambiguity and lead to better learning and localisation. (2) Image backgrounds are shared across classes to better learn varying surroundings and “push out” objects of interest. (3) Our model can be learned with a mixture of weakly labelled and unlabelled data, allowing the large volume of unlabelled images on the Internet to be exploited for learning. Moreover, the Bayesian formulation enables the exploitation of various types of prior knowledge to compensate for the limited supervision offered by weakly labelled data, as well as Bayesian domain adaptation for transfer learning. Extensive experiments on the PASCAL VOC, ImageNet and YouTube-Object videos datasets demonstrate the effectiveness of our Bayesian joint model for weakly supervised object localisation.
机译:我们解决了将对象定位为带有弱标签的图像和视频中的边界框的问题。过去已经使用区分模型解决了这个弱监督的对象定位问题,在该模型中,每个对象类均独立于其他类进行本地化。本文提出了一种基于贝叶斯联合主题建模的新颖框架,该框架与现有框架的显着不同之处在于:(1)所有前景对象类都在单个生成模型中共同建模,该模型对多个对象共存进行编码,从而“解释”推理可以解决歧义,并导致更好的学习和本地化。 (2)在各个班级之间共享图像背景,以更好地学习变化的环境并“推出”感兴趣的对象。 (3)可以通过混合使用标记不明确的数据和未标记的数据来学习我们的模型,从而可以利用互联网上的大量未标记图像进行学习。此外,贝叶斯公式使得能够利用各种类型的先验知识来补偿弱标记数据提供的有限监督,以及用于转移学习的贝叶斯域适应。在PASCAL VOC,ImageNet和YouTube-Object视频数据集上进行的大量实验证明了我们的贝叶斯联合模型对于弱监督对象定位的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号